Zu Group Meeting

Total Synthesis of Bryostatin 3

Ken Ohmori, Yasuyuki Ogawa, Tetsuo Obitsu, Yuichi Ishikawa, Shigeru Nishiyama, Shosuke Yamamura

reporter: chenlu 20200612

Introduction

marine bryozoan bugula neritina

- 1. 有效的抗肿瘤活性
- 2. 免疫增强活性
- 3. 诱导突触发育
- 4. 潜在的HIV调制活性
- 5. 有益于中风后遗症的治疗
- 6. 修复血脑屏障
- 7. 蛋白激酶C激动剂

Bryostatin 1: R = Ac, PKC *K*_i = 1.35 nM Keck 2011, 31 steps (LLS), 58 steps (TS) Wender 2017, 19 steps (LLS), 29 steps (TS)

Bryostatin 2: R = H, PKC K_i = 5.86 nM Evans 1999, 42 steps (LLS), 72 steps (TS)

Bryostatin 16: PKC K_i = 118 nM Trost 2008, 28 steps (LLS), 42 steps (TS)

- Bryostatin 7: R¹ = Me, R² = Me, PKC *K*_i = 0.84 nM Masamune 1990, 41 steps (LLS), 79 steps (TS) Krische 2011, 20 steps (LLS), 36 steps (TS)
- Bryostatin 8: R¹ = ^{*n*}Pr, R² = ^{*n*}Pr, PKC *K*_i = 1.72 nM Song 2018, 29 steps (LLS), 51 steps (TS)
- Bryostatin 9: R^1 = Me, R^2 = ^{*n*}Pr, PKC K_i = 1.31 nM Wender 2011, 25 steps (LLS), 43 steps (TS)

unique butenolide unit

Bryostatin 3: PKC K_i = 2.75 nMYamamura 2000, 43 steps (LLS), 88 steps (TS)This work, 22 steps (LLS), 31 steps (TS)

Retrosynthetic Analysis

1. Synthesis of the C10-C16 Fragment

- 2. More Details of Name Reactions
- 3. Mechanisms of Main Conversions.

Synthesis of the C10-C16 Fragment

Synthesis of the C10-C16 Fragment

Felkin-Anh's Rule and Cram's Chelating Rule

Donald J. Cram Facts

Photo from the Nobel Foundation archive.

Cram 规则:

为了解释和预测亲核试剂对α-手性醛加成的立体选择性 **模型特点:**

Los Angeles, CA, USA

Prize share: 1/3

Donald J. Cram

The Nobel Prize in Chemistry 1987

Born: 22 April 1919, Chester, VT, USA

Died: 17 June 2001, Palm Desert, CA, USA

Affiliation at the time of the award: University of California,

Prize motivation: "for their development and use of molecules

with structure-specific interactions of high selectivity." 具有高选择性的结构特异性相互作用的分子的开发和使用

- α-手性碳上带有"R_L, R_M, R_S"三个基团, 在纽曼投影 式中R_L与羰基处于对位交叉式。
- 2. Nu⁻从空间位阻更小的R_S一侧进攻。

J. Am. Chem. Soc. 1952, 74 (23), 5828-5835.

Felkin-Anh's Rule and Cram's Chelating Rule

Felkin-Anh 模型规则:

为了解释和预测亲核试剂对α-手性醛酮加成的立体选择性 **模型特点**:

- 1. 首先画出纽曼投影式的反应构型
- 2. R_L与羰基处于垂直交叉式。
- 3. Nu-从空间位阻更小的R_s一侧进攻。
- 4. Nu⁻从Burgi-Dunitz 轨道(107°)进攻。

Felkin-Anh's Rule and Cram's Chelating Rule

Cram 螯合规则:

Felkin Anh's Rule and Cram's Chelating Rule

Synthesis of the C5-C9 Fragment

Synthesis of the C5-C9 Fragment

Collins Oxidation

铬化合物、特别是六价的铬毒性特别强、所以反应中以及反应后的处理特别需要注意

٠

Wittig Olefination Reaction

G. Wittig., U. Schöllkopf. Chem. Ber. 1954, 87, 1318.

Wittig Olefination Reaction

DIBAL-H

DIBAL (Di-isobutyl aluminum hydride)

Also known as: DIBAL-H, DIBAH

- Reduction Of Esters To Aldehydes
- Reduction Of Ketones And Aldehydes To Alcohols
- Reduction Of Nitriles To Imines
 (And Subsequent Hydrolysis To Aldehydes)

Reduction of ester

Reduction of nitriles

Coordination of the nitrogen lone pair to the aluminum

Delivery of hydride to the nitrile carbon

Formation of an imine

Sharpless Asymmetric Epoxidation

Barry Sharpless Facts

K. Barry Sharpless The Nobel Prize in Chemistry 2001

Born: 28 April 1941, Philadelphia, PA, USA

Affiliation at the time of the award: The Scripps Research Institute, La Jolla, CA, USA

Prize motivation: "for his work on chirally catalysed oxidation reactions."

Prize share: 1/2

 $\begin{array}{c} OBn \qquad OH \\ & \underline{4. D-(-)-DET, Ti(iPrO)_4,} \\ & \underline{TBHP, CH_2CI_2, 85\%} \end{array}$

Sharpless AD

 只适用于烯丙醇,因为羟基的存在是必须的。
 在其它烯烃存在时,烯丙醇能够高化学选择 性地发生不对称环氧化。

3. 不对称环氧化过程完全由试剂控制:对于同一烯丙醇底物,左旋和右旋酒石酸酯所得到的环氧产物构型完全相反,具有非常好的面选择 F 性。将烯丙醇的羟基朝右放置于平面上,D-酒 石酸酯形成的环氧在平面上方,L-酒石酸酯催 化得到的环氧在平面的下方。(无一例外)

Sharpless Asymmetric Epoxidation

Note: The mechanism shown is using D-(-)-diethyl tartrate and is simplified for clarity. It is believed that this reaction proceeds through a dimeric titanium complex

Red-Al

Red-Al

H₂ Pd/C Debenzylation

Swern Oxidation

Mechanism

Summary

- 1. Synthesis of the C5-C9 Fragment
- 2. Collins Oxidation
- 3. Wittig Olefination
- 4. DIBAL-H/Red-Al
- 5. Sharpless Asymmetric Epoxidation
- 6. H₂ Pd/C Debenzylation
- 7. Swern Oxidation

Retrosynthetic Analysis

Synthetic Route: Synthesis of Fragment 3

Synthetic Route: Synthesis of Fragment 4

Synthetic Route: Synthesis of Intermediate 2

С

Synthetic Route: Synthesis of Intermediate 1

Synthetic Route: Synthesis of Intermediate 1

Synthetic Route: Synthesis of Bryostatin 3

Synthetic Route: Synthesis of Bryostatin 3

Summary

- 1. A concise total synthesis of bryostatin 3
- It used 22 steps in the longest linear sequence and 31 total steps
- 3. A highly convergent synthetic plan
- 4. A highly atom-economical and chemoselective transformations
- 5. Allowing for structure-activity-relationship (SAR) studies.

A premix of the four reagent components is commercially available. The composition containing (DHQD)₂-PHAL is termed AD-mix-β; the composition containing (DHQ)₂-PHAL is termed AD-mix-α.

(DHQD)₂-PHAL = 1,4-bis(9-O-dihydroquinidine)phthalazine; (DHQ)₂-PHAL =1,4-bis(9-O-dihydroquinine)phthalazine.

R_L = largest substituent; R_M = medium-sized substituent; R_S = smallest substituent.

Wittig and Stork Wittig

Mechanism of the Wittig Reaction

[Note: in many cases, step 1 and step 2 happen essentially simultaneously]

• Ylides bearing electron-withdrawing groups tend to give E alkenes:

Sonogashira coupling TMS L----Pd----L F₃C NH₂ F₃ VH2 TMS Cul Cu--TMS Et₃NHI Et₃N the artical case R2 cat.PdL_n, THF R² R XZn - R^3 R3 R = COOMe, COOEt, COPh, COC₆H₁₁-c, CH=CMeCOOEt, CH=CHCH=CMeCOOEt, Ph, n-Hex. R¹, R², R³ = C, H, or Br. X = halogens or OTf.

Propargylation of Aldehydes

The proposed catalytic cycle is based on a Cu-alkoxide mediated B/Cu exchange with the propargyl borolane 1 to generate an allenyl Cu intermediate 3 (Scheme 1). After propargylation of an aldehyde,

Scheme 1. Proposed Mechanism for a Cu Catalyzed Propargylation of Aldehydes with a Propargyl Borolane

a Cu-alkoxide species would be regenerated, and a catalytic cycle would be established. The two key operations in this catalytic cycle

ipso-brominaton

mations 223 or 224. Both of these pathways lead to the vinyl bromide or chloride 225 that is the product of inversion of configuration.^{14,481}

Alkyne/Alkyne Coupling

be excluded. This mechanism accounts for the overall event of a *cis* addition in a Markovnikov fashion for the homocoupling and in a Michael fashion for the cross-coupling.

